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Abstract
Recently, neural techniques have been used to gen-
erate source code automatically. While promising
for declarative languages, these approaches achieve
much poorer performance on datasets for imperative
languages. Since a declarative language is typically
embedded in an imperative language (i.e., the tur-
ducken-style programming) in real-world software
development, the promising results on declarative
languages can hardly lead to significant reduction
of manual software development efforts.
In this paper, we define a new code generation task:
given a natural language comment, this task aims
to generate a program in a base imperative lan-
guage with an embedded declarative language. To
our knowledge, this is the first turducken-style code
generation task. For this task, we present Lyra: a
dataset in Python with embedded SQL. This dataset
contains 2,000 carefully annotated database manip-
ulation programs from real-world projects. Each
program is paired with both a Chinese comment
and an English comment. In our experiment, we
adopted Transformer, BERT-style, and GPT-style
models as baselines. In the best setting, the gen-
eration performance of GPT-style models is better
than others, where the AST exact matching accu-
racy is 24% and 25.5% when using Chinese and
English comments, respectively. Therefore, we be-
lieve that Lyra provides a new challenge for code
generation. Yet, overcoming this challengemay sig-
nificantly boost the applicability of code generation
techniques for real-world software development.

1 Introduction
With the increase of software complexity, the process of
programming is becoming time-consuming and error-prone
[Sommerville, 1992]. Code generation is an important ar-
tificial intelligence problem that has the potential to release
human beings from challenging software development [Dahl
et al., 1994; Ling et al., 2016]. It requires both understanding
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Figure 1: The examples included in the Lyra dataset, (a) is the SQL
statement, (b) is the source code of executing raw SQL.

the meaning of development requirements and mapping them
to executable source code.
With significant advances in deep learning, many neural-

based code generation methods have been proposed. Existing
approaches perform well on declarative languages including
database query languages [Yu et al., 2018; Zhong et al., 2017]
and regular expressions [Li et al., 2021]. For example, Xuan et
al. 2021 generate SQL programswith 93% execution accuracy
among the test set ofWikiSQL [Zhong et al., 2017], while Sun
et al. 2020 achieves generate lambda calculus programs with
89% exact match among the test set of ATIS [Price, 1990;
Dahl et al., 1994]. These high-accuracy models facilitate
end-users to perform various operations, such as querying
records in a database, without understanding the syntax of the
declarative language. Therefore, it is tempting to directly use
such well performed approaches to improve the efficiency of
the real-world software development.
However, almost no large-scale software iswrittenwith only

one declarative language. A declarative language is usually
embedded in another imperative language, such as Java and
Python. For example, as shown in Figure 1, a SQL statement
is typically embedded as a string in Python with parameters
specifying the condition being queried. Existing code gen-
eration approaches generate imperative programs with much
poorer performance than generate declarative programs, mak-
ing them difficult to apply to real-world software development.
For example, Sun et al. 2020 generates Python programs with
only 33% human evaluated accuracy among the test set of
HearthStone [Ling et al., 2016], while CodeGPT [Lu et al.,
2021] generates Java programs with only 20% exact match
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among the test set of concode [Iyer et al., 2018].
To the best of our knowledge, none of the existing datasets

is suitable for the above scenario, where a declarative lan-
guage is embedded in an imperative language. In fact, an
existing dataset focuses on generating code in one specific
language, either a declarative language or an imperative lan-
guage. Therefore, it is hard to transfer the good performance
on declarative languages to real-world software development.
To tackle this situation, we introduce a new code generation
task involving one declarative language embedded in one im-
perative language. Since our code generation task aims to
generate a program in a base language with an embedded
language for a given natural language comment, we call it
turducken-style programming. Turducken literally means a
recipe method in which one animal is stuffed into the stomach
of another. We use the turducken analogy to stuff one pro-
gramming language into another. As far as we know, this is
the first time to introduce the turducken-style code generation
task.
Compared with code generation for declarative languages,

the turducken-style code generation is more challenging
mainly for the following reasons. First, this task involves
at least two different grammars. Learning two different gram-
mars at the same time is challenging. Second, the two lan-
guages are interrelated and interdependent, and the model
should have the ability to express cross-language dependency.
To support this task, we construct a corresponding dataset
involving Python and SQL. Python is currently a very pop-
ular programming language. Many code generation datasets
are associated with Python, such as Hearthstone [Ling et al.,
2016] and CoNaLa [Yin et al., 2018]. There are also many
datasets for text-to-SQL tasks, such as WikiSQL [Zhong et
al., 2017] and Spider [Yu et al., 2018]. The generation of
SQL on these datasets has achieved promising results [Xuan
et al., 2021].
Constructing a large, realistic dataset in the field of code

generation is typically challenging due to the following rea-
sons. First, the application scope is very wide, and the search
space of programs written by different programming lan-
guages and purposes is extremely huge. This makes the pro-
cess of collecting source code from real-world development
projects far more cumbersome than collecting other data, such
as images. Second, identifying the functionality of the col-
lected source code is also challenging. Certain experience
is necessary to understand the content and logic of the pro-
grams. Moreover, the code crawled from the development
project often needs to be modified before it can be used. For
example, "conn = self.db.connect()" might means to get
the connection from the existing database "db". But "self"
belongs to the dependence information outside the function
block, which leads to the situation that the source code func-
tion cannot be executed independently. The modification of
the code requires the annotator to have pre-knowledge and
practical experience, and this process is essential to ensure
the quality of the dataset. All of these processes are des-
tined to be challenging to collect high-quality and realistic
code generation datasets. We believe that a good code gener-
ation dataset should have satisfactory realisticness, diversity,
quality and complexity.

In this paper, we present a new code generation dataset,
which is specific to the turducken-style code generation task.
To ensure that our dataset has satisfactory characteristics, our
data have been processed as follows. First, to meet the real-
isticness and diversity requirements, the source code snippets
are crawled from real development projects on Github. Sec-
ond, our data have gone through a fine annotation process of
400 human hours. Since most of the original data contain
project-related information, they cannot be directly used as
independent functions. To address this challenge, we man-
ually modified the crawled data. In the above case, we can
put the connection information "conn" as a parameter in the
parameter list of the function block. We describe these details
in our annotation process. Additionally, to address the quality
problem, we designed a quick and efficient checker to check
each data. Specifically, we use some rule-based methods to
check and modify the annotated data according to the charac-
teristics of the dataset. Finally, we constructed Lyra, which
contains 2,000 carefully modified source code snippets, and
each code snippet corresponds to one Chinese and one English
comments.
Figure 1 shows an example in the Lyra dataset. In this

figure, the subfigure (a) is a SQL statement, subfigure (b) is
the corresponding source code for executing SQL statement.
Each source code in the dataset can be divided into three parts:
preparation before SQL execution, executing SQL statements,
and processing query results. For the example in subfigure (b),
line 4 shows the process of executing SQL statements based on
the function parameters; lines 1-3 import the package required
by the function, define the function, and prepare for SQL
execution; lines 5-7 process the results of the query. Note
that our data are not a simple combination of SQL statements
and Python code, but there is a close interaction between
them. For example, the parameter "password" is used as the
judgment condition of line 3 in the base language and also
as the parameter to match the SQL string in the embedded
language.
In addition, we used currently popular neural network

architectures, Transformer[Vaswani et al., 2017] and pre-
trained models (BERT-style and GPT-style)[Feng et al., 2020;
Radford et al., 2019; Lu et al., 2021] both, to conduct exper-
iments on our dataset. The best performance of the model
can reach 24% and 25.5% AST (Abstract Syntax Tree) exact
matching accuracy using Chinese and English comments, re-
spectively. Experimental results show that our dataset may
improve the practicability of code generation tasks in some
specific applications. They also suggest that our dataset is
complex and there is a large room for further development
and utilization.

2 Related Work
Most closely related to our task is the previous code genera-
tion task for generating programs in single programming lan-
guages ( [Ling et al., 2016; Oda et al., 2015; Tao et al., 2020;
Chen et al., 2021], etc) and the text-to-SQL task for gener-
ating SQL statements ( [Zhong et al., 2017; Yu et al., 2018;
Liang et al., 2022], etc). They are all the process through
the understanding of natural languages to generate the cor-



Figure 2: The basic process of data set collection.

responding structured information. Below we discuss the
research status of datasets related to these two task.
For the code generation task, several datasets with different

programming languages have been created. These datasets in-
cludeATIS [Price, 1990; Dahl et al., 1994], Hearthstone [Ling
et al., 2016], CONCODE [Iyer et al., 2018], and CoNaLa [Yin
et al., 2018]. Although deep learning-based code generation
is potentially promising and existing evaluations suggest that
such approaches may be more accurate [Sun et al., 2020], they
are most evaluated on datasets where requirements are differ-
ent from real-world requirements in the industry [Liu et al.,
2020]. On one hand, the current datasets can hardly be both of
high-quality and used in the actual development process. Be-
cause the code blocks extracted from real projects often have
a lot of project-related dependency information, they cannot
be used directly. On the other hand, the generated programs
are often significantly different from their references. They
often contain syntax or semantic errors, and very little code
can pass the test to meet the needs of actual use. Besides,
most of the previous code generation datasets only considered
one programming language, not the combination of different
programming languages.
As to the text-to-SQL task, many datasets using SQL as

programs have been created, such as Yelp and IMDB [Yagh-
mazadeh et al., 2017], WikiSQL [Zhong et al., 2017] and
Spider [Yu et al., 2018]. These datasets have been stud-
ied by researchers in both communities of NLP [Xuan et al.,
2021] and Database [Yaghmazadeh et al., 2017]. Using
natural language description to generate SQL statements is
easier than generating source code needed in development.
However, the current scenarios of text-to-SQL task are bound
with end users, and in actual development, SQL statements
are often embedded in specific programming languages, such
as Python, to perform database manipulation. For example,
the SQL statement "select id in user where name = Bob"
can only query Bob’s id value. If you replace "Bob" with a
variable in the base language, you can query any person spec-
ified by the variable.
That is to say, in real-world development, SQL statements

are typically embedded in base languages to increase the ex-
pressiveness. In the field of code generation, this turducken-
style task needs to considered to improve the usability of gen-
erated code. We construct a new dataset, Lyra, about using
Python to operate databases to support our task.

3 Dataset Construction
All the code in our dataset is crawled from Github, where
each example is an independent function block. The source
code reflects how to use Python and SQL to manipulate the
database in real development. Ten computer science students
as annotators participated in the code modification and Chi-

Figure 3: Data annotation process, including code modification and
comment annotation.

nese comments annotation process, and two English profes-
sionals were responsible for annotating and checking the En-
glish comments. As illustrated in Figure 2, we developed our
dataset with 2,000 examples, spending around 430 hours of
human labor in total. Note that we first explained our annota-
tion task and compensation plan to each candidate annotator.
This ensures that candidates who intended to participate in
our task knew the specific work and were satisfied with the
corresponding compensation. Finally, all participants in the
annotation process were well informed and voluntary.

3.1 Dataset Collection
Collecting code snippets with correct functionality, clear
logic, and applicable to actual development is hard. The code
crawled from Github often has project-related operations or
global variables. That results in source code not being an
independent executable function block. Besides, the logic of
some source code is often not clear enough, and even has
bugs. These all bring challenges to construct the dataset.
To solve these challenges, we used the process shown in

Figure 2 to our dataset. First, we obtained 8,618 user repos-
itories from Github. Most of them are related to using the
SQLAlchemy framework in Python to access the database.
Second, we extracted 120,540 source code snippets written
in the Python programming language from these repositories,
and then obtained 18,047 unique function blocks related to
SQL operations. Third, a programmer chose from these non-
duplicated function blocks those that seem to have clear code
logic and are easy to understand as candidates for annota-
tion. Finally, we used a strict annotation process to modify
the source code and annotate the corresponding comments.
The final dataset contains 2,000 pieces of source code with
related Chinese and English comments.
It is the most time-consuming (400 man-hours) in the code

and comment annotation stage. At this stage, we first made
careful modifications of the original code so that the final code
logic is clear and the functionality is correct. In addition, we
used Chinese and English to annotate the code. At the end
of this stage, we also checked the quality of the dataset, and
conducted a sampled evaluation. The specific process at this
stage is shown in Figure 3.

3.2 Code Modification and Comments Annotation
To ensure the correctness and conciseness of the code and the
completeness of the comments, we have designed many rules
for the annotators to follow. This stage can be divided into
two parts: code modification and comments annotation. In



this stage, we randomly distributed 100 pieces of data to each
annotator each time. After annotation, the data need to pass
the quality checking. If the code passes the quality check,
we continued to provide the same amount of new data for
the annotator. Everyone was treated fairly in this stage with-
out prejudice. Everyone was compensated according to their
workload. Those who gave annotation with more quantity
and better quality got more compensation. This setting makes
the annotator not ignore the quality of annotation because of
too much data. Therefore, while ensuring the data quality, all
annotators beared roughly balanced task pressure.
Code Modification
Most of the function blocks extracted from Github are in-
complete or incorrect. The most common problem is to refer
to variables and class methods outside the function block,
that is, project-related information. A function block contain-
ing project-related information often makes the function level
code in the dataset difficult to understand. Therefore, we must
make certain modifications before the code can be used as an
independent function block and can pass the static program
analysis. Also, we need to ensure that the collected Python
code is correct for using SQL to access the database. For this
reason, we have added the following restrictions:

• Return the built-in Python data objects (list, dict,...) after
executing the SQL statement, instead of objects of other
classes.

• Keep the SQL statements whose operations are related
to only the SELECT keyword, not INSERT, UPDATE and
CREATE.

• Remove project-related information and use parameters
to express specific variables or classes outside the func-
tion block.

Programmers often need to generate concise code rather
than an obscure code, so conciseness is very important for us-
ing the generated code in real scenarios. We set the following
rules to achieve this goal:

• Simplify the complex variable names (more than 30 char-
acters). This requires the annotator to simplify according
to the functionality of the source code and the meaning
of the original function name.

• Remove redundant information that does not affect the
functionality of the source code, such as redundant
spaces, line breaks and comments.

• Focus on the part of the program where Python code
embedded with SQL statements. Try to remove Python
code that has nothing to do with SQL operations.

Comments Annotation
In the task of code generation, the purpose and principle of
annotation are that when the programmer sees the annotation,
he/she can write the code with the same functionality as the
source code. Complete comments can generate better source
code, but more complete comments is more difficult to pro-
vide. Ideally, we aim to generate the most useful code with the
simplest description. In order to assist annotators to annotate
the key information in the source code more effectively, we
also designed some rules.

First, for the purpose of source code annotation, we set the
following principle for comment annotators: correctness, di-
versity, and clarity. Correctness requires that the annotator can
understand the source code well and give the corresponding
code description. Diversity and clarity are the requirements
of the language level of the annotator. At best, other program-
mers should be able to write the same code by referring to the
annotation.
Second, from the perspective of source code composition,

we add some specific requirements. The composition of the
source code collected in this paper can be divided into tem-
porary variables, function parameters, import functions, and
built-in methods. We set this rule to guide the annotator to
decide which content must be described and which content
can be omitted. Temporary variables in the source code do
not need to be described in the comments because they may
not affect the functionality of the code. The parameters in the
source code need to be described in the comment and marked
with the $ symbol. Import packages and built-in methods in
source code generally do not need to be described in com-
ments if they are commonly used. But if there are rarely used,
they need to be distinguished in the comments.
Furthermore, specific to our task, we provide more detailed

annotation guidance. For example, different SQL execution
styles need to be distinguished in the comments, and SQL
statements and their related operations should be relatively
independent. These rules can make the annotator better un-
derstand the data we need for the current task.
Finally, we provided examples for each annotator to learn.

In the early stage of annotation, we analyzed the examples of
annotation errors and generate the corresponding documents.
In addition, we used the way of real-time update and sharing
to let the annotator avoid the subsequent annotation errors as
much as possible.

3.3 Automatic Quality Checker
It is very time-consuming and error-prone to manually check
the content annotated by the annotator one by one. In this pa-
per, we designed an automated checker to check the modified
code and annotated comments.
As described in Figure 3, our checker contains two ba-

sic components, which are content mismatch check for code
comments and error detection for modified code. First, we
designed a series of check items for the code comments. For
example, we automatically check whether the comment com-
pletely describe all the parameters in the function, and check
whether the comment match the corresponding source code
through the characteristics of the code. Second, some function
blocksmay have specific project-related information, and can-
not be used as independent function blocks. We used Pylint
(https://www.pylint.org), a Python static code analysis tool, to
check the code function. We check all the modified code and
found some errors after modification. Finally, we returned all
the problematic source code for re-modification.

3.4 Data Sampling Check
We randomly selected 100 examples from the dataset each
time for checking. We further iteratively improved the rules
of the quality checker by analyzing errors from the sampled



Number of. Train Valid Test
mean max min mean max min mean max min

Tokens of CC 70.43 368 30 71.18 154 29 69.93 157 30
Tokens of EC 57.69 202 25 58.17 119 28 57.44 146 23
AST Nodes 44.36 108 19 43.9 129 23 43.66 81 19
Parameters 2.23 6 1 2.3 5 1 2.23 4 1

Table 1: Dataset statistics of Lyra. CC and EC represent Chinese
and English comments respectively.

data. Until there were no obvious problems with the next
random sample of data, we terminated the iterative process.

3.5 Final Review
Finally, we asked the most experienced annotator and En-
glish professionals to conduct the final review after the data
sampling check. At this stage, we tried to ensure that there
are no language problems in the comments and no sensitive
information in the source code.

4 Dataset Statistics
We summarize the statistics of Lyra in Table 1. Lyra contains
2,000 source code snippets for databasemanipulation and their
corresponding comments. There are 3 code execution styles
in our dataset, which correspond to common SQL processing
methods in SQLAlchemy. The first style is to execute raw
SQL statements in strings. The second style is to execute SQL
statements represented by Python expressions. The third style
is to use SQLAlchemy’s ORM (Object Relational Mapper)
to execute the SQL statements. To make the style of the
dataset consistent, we allow the table objects in the second
and third execution-styles to be passed in as parameters. In
addition, there is no complex SQL statement in Lyra. The SQL
components involved include SELECT, COUNT, WHERE,
but no complex keywords like GROUP BY, ORDER BY.

5 Methods
To analyze the quality and demonstrate the purpose of our
corpus, we experimentedwith several code generationmodels.
Although many advanced methods generate code in the form
ofAST, they are designed to generate code from the syntax of a
single programming language. Thesemethods cannot directly
be applied to our turducken-style task, so we chose some
currently popular and generic neural models as baselines.

5.1 Transformer
Transformer [Vaswani et al., 2017] is a popular encoder-
decoder framework that has surpassed RNNs on many
sequence-to-sequence tasks. In the encoder, the Transformer
first maps the input sequence to word embedding and position
embedding. We also use word-level and BPE [Sennrich et
al., 2016] methods to tokenize the source code. Then Trans-
former uses a stack of encoder layers for encoding. Finally,
the decoder outputs the word distribution on the vocabulary.

5.2 BERT-Style Models
BERT-style models are pre-trained models based on the en-
coder in Transformer. Large pre-trained models can learn ef-
fective contextual representation from unlabeled data through

self-supervised objectives and have brought significant im-
provement to various NLP tasks [Devlin et al., 2018]. We use
CodeBERT [Feng et al., 2020] and GraphCodeBERT [Guo
et al., 2020] as BERT-style baselines to generate code snip-
pets. These models are pre-trained for natural language and
programming language on the CodeSearchNet [Husain et al.,
2019] dataset, which contains more than 2M functions of six
programming languages paired with natural language doc-
uments. After adding the decoder structure to BERT-style
pre-trained models, they can be used in generation tasks.

5.3 GPT-Style Models
GPT-style models are pre-trained models based on the de-
coder in Transformer. We use GPT-2 [Radford et al., 2019],
CodeGPT, and CodeGPT-adapted [Lu et al., 2021] as GPT-
style baselines. GPT-2 is pre-trained onWebText dataset with
1.5B parameters. CodeGPT shares the same model architec-
ture with GPT-2, but CodeGPT is pre-trained from scratch
on single programming language corpora in CodeSearchNet.
CodeGPT-adapted is a domain-adaptive one, which take the
GPT-2 model as the starting point and continually trained
on code corpus. GPT-style models can perform directly on
downstream tasks without adding any additional architecture.

6 Evaluation and Discussion
6.1 Evaluation Metrics
In our experiment, we use three types of metrics to evaluate
the generated code on lexical similarity, syntactic similarity,
and semantic similarity, respectively. For lexical similarity,
we use BLEU (bilingual evaluation understudy) [Papineni et
al., 2002] to compare the lexical similarity between the gen-
erated code and the reference code. For syntax similarity, we
use Code Executable to judge whether the generated code is
syntactically correct. For semantic similarity, we use AST
Matching to evaluate the functionality of the generated code.
Since the generated code usually contains a long SQL string
and code for operating SQL, the ASTMatching evaluates both
the AST elements with andwithout SQL content, namely AST
Exact Matching and ASTMatching in Base Language. In par-
ticular, we did not use unit testing as a evaluation metric in our
paper, because our code snippets are collected from Github,
and it is hard to get test cases. Different from text-to-SQL
datasets, our code not only comes from multiple projects but
also has various parameters for each function. They cannot
be executed and unit tested like SQL statements and it poten-
tially takes heavy human involvement to construct test cases
for these code snippets.
BLEU. The first quality metrics is BLEU. BLEU was ini-
tially proposed to assess the quality ofmachine translation [Pa-
pineni et al., 2002]. For code generation, BLEU scores are
calculated to compare the lexical similarity between the gener-
ated code and the reference code, where the score is between 0
and 1. We use BLEU 4 to evaluate the generated code, which
is also used to evaluate existing code generation techniques.
Code Executable. The second metric is the proportion of
generated code that can be executed, in other words, can be
successfully compiled. The premise of generating a function-
ally correct program is to ensure that the program can pass



BLEU(%)
Code

Executable
(%)

AST Matching
in Base

Language(%)

AST Exact
Matching
(%)

Transformer-EC 48.69 18.5 2.5 1
BPE+Transformer-EC 47.05 23 4 1.5
CodeBERT-EC 56.72 51 8.5 4.5

GraphCodeBERT-EC 58.61 46 12.5 6
GPT-EC 67.29 88 24.5 21.5

CodeGPT-EC 65.96 93 23.5 21
CodeGPT-Adapted-EC 66.5 92 29 25.5
Transformer-CC 49.83 21 2 0

BPE+Transformer-CC 45.84 21.5 3 0.5
GPT-CC 66 92 22 20.5

CodeGPT-CC 64.88 91 26 24
CodeGPT-Adapted-CC 66.37 96 24.5 23

Table 2: The performance of the Transformer. CC and EC represent
Chinese and English comments respectively.

the static analysis. All code in our dataset can be successfully
compiled, so we use Pylint to check the generated code and
calculate the ratio of the successfully complied code snippets.
AST Matching in Base Language. The third evaluation
metric is AST matching accuracy in the base language with-
out considering the embedded language. In our dataset, we
calculate the AST match of the Python program without con-
sidering SQL strings. Specifically, we replaced the content
of SQL string in the source code snippet with a specific vari-
able before calculate the AST matching rate. In other word,
we anonymized the specific variable name and SQL content.
For example, ’res = conn.execute ("select id from user")’ is
converted to ’var_0 = var_1.var_2(var_3)’.
AST Exact Matching. The fifth metric is the exact match of
AST, which also means that the functionality of the generated
code is correct. We only replaced the variable names in
the code, instead of the SQL content. The replacement of
variable name does not affect the functional correctness of
the function. In the above example, it is transformed into
’var_0 = var_1.var_2("select id from user")’. Note that AST
Exact Matching is more stringent than functional correctness,
because if the code is functionally correct, the code can also
be expressed in different forms.

6.2 Experiment Settings
We randomly selected the 10% of 2,000 examples in our
dataset for testing and validation respectively, and the remain-
ing 80% for training. Since both CodeBERT and GraphCode-
BERT use English language for pre-training, they are not used
to generate code with Chinese comment.

6.3 Experiment Results and Discussion
We summarize the performance of different models on our
test set in Table 2. Among all models, the GPT-style models
perform better in our evaluation metrics. The best model
in GPT-style models can reach 24% and 25.5% AST exact
matching accuracy using Chinese and English comments.
The generated code can be divided into three cases. In the

first case, the model cannot correctly generate either SQL or
Python parts in the program. In the second case, themodel can
only correctly generate one of the programming languages in

the program, either Python or SQL. This is because the model
cannot effectively learn the generation of another syntax or
the model cannot learn the interaction between the two lan-
guages. For example, forgetting to generate the aggregate
function of SQL or ignoring the correspondence of variables
between SQL statements and Python code can lead to this situ-
ation. In the third case, the model generates code with correct
functionality. This is a satisfactory situation, which means to
generate the correct base program and embedded program at
the same time. With the SQL in the Python program becomes
complex and the processing before and after executing SQL
becomes diverse, it is difficult to generate correct code.
Although the performance of the best model in our exper-

iment is still lower than the state-of-the-art performance on
text-to-SQL tasks or text-to-Python tasks, we believe that it is
promising to achieve much better performance on our dataset
in the future. First, no models in our experiment exploit the
characteristics or the interactions of the two programming lan-
guages. A distinctive feature of our dataset is the involvement
of two different languages. While this feature may impose
extra difficulty for code generation, it also provides new op-
portunities for approaches exploiting this feature. Second,
the nature of the imperative code in our dataset is different
from that in existing imperative code generation datasets. The
imperative code in our dataset focuses on preparing the SQL
statements and collecting query results, and does not contain
complex logic. Thus, we believe that generating the imper-
ative code alone in our dataset may technically be less diffi-
cult than generating the imperative code in existing datasets.
Achieving around 25% accuracy with a straightforward model
in our experiment may have already indicated this trend.

7 Conclusion
In this paper, we define a turducken-style code generation task:
generating a program in a base language with an embedded
language by giving a natural language comment. We also in-
troduce Lyra, a new dataset to support our task. Lyra contains
2,000 carefully annotated databasemanipulation programs us-
ing the Python programming language. These data are crawled
from real projects in Github and each source code snippet is
paired with both a Chinese comment and an English com-
ment. Experimental results suggest that Lyra provides a new
challenge for code generation. In future work, we plan to con-
sider the characteristics of the two programming languages to
improve the generation performance for Lyra. We also plan to
explore more types of Turducken-style code generation tasks
to promote the practical application of code generation, such
as generating programs with JavaScript embedded in HTML
and SQL embedded in XML or Java. In addition, we also plan
to explore the different effects of Chinese and English com-
ments on generation, as well as the use of natural languages
other than Chinese and English.
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